Algebra III

100 Points

Notes.

(a) Begin each answer on a separate sheet and ensure that the answers to all the parts to a question are arranged contiguously.

(b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers \mathbb{C} = complex numbers.

1. [10 points] Let $f : \mathbb{C}[X, Y] \to \mathbb{C}[t]$ be the map between polynomial rings over \mathbb{C} such that f is identity on \mathbb{C} and $f(X) = t^2$, $f(Y) = t^5$. Prove that the kernel of f is generated by $Y^2 - X^5$.

2. [15 points]

(i) Let R be a ring. Prove that for ideals I, J in R, if I + J = R, then $I \cdot J = I \cap J$.

(ii) In the ring $R = \mathbb{Z}[\sqrt{-5}]$ prove that $(3, 1 - \sqrt{-5}) \cap (2, 1 + \sqrt{-5}) = (1 - \sqrt{-5})$.

3. [30 points] Let \mathbb{F}_3 denote the field of 3 elements. In each of the following cases of $f \in \mathbb{F}_3[X]$, determine whether the ring $R = \mathbb{F}_3[X]/(f)$ is a field, whether it has a nonzero nilpotent, and whether it has a nontrivial idempotent.

(a) $f(X) = X^2 + X + 1$ (b) $f(X) = X^2 + 1$ (c) $f(X) = X^2 + 2$

4. [15 points]

Find two maximal ideals containing $I = (X^2 + Y^2 - 1, X + Y - 1)$ in $R = \mathbb{C}[X, Y]$. Prove that these two are the only ideals containing I apart from I and R.

- 5. [7 points] Find all the units in $\mathbb{Z}[\sqrt{-3}]$.
- 6. [15 points] Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain.
- 7. [8 points] Give an example of a ring R that is not a domain and in which every ideal is principal.